# Reducing the Carbon Footprint Through Land Use and Transportation

**Atlanta Regional Commission – Elaine Olivares** 

Clean Air Campaign – Brian Carr

**HNTB - Andrew C. Smith, AICP** 

**HNTB - Timothy P. Hatton, AICP** 

September 2008





Timothy P. Hatton, AICP

Managed Lanes:
Potential Reductions to
Atlanta's Carbon Footprint



#### Overview

- Carbon Footprint Definition
- EPA's Role
- Managed Lanes Policy Options and Analysis
- Describe Assumptions
- Show Results



# What is a Carbon Footprint?

#### Carbon Footprint

- The total amount of greenhouse gases produced to directly and indirectly support human activities, usually expressed in equivalent tons or kilogram (kg) of carbon dioxide (CO2).
- For each gallon of gasoline fuel consumed, 8.7 kg carbon dioxide (CO2) is emitted
- Average American has a carbon footprint of 20 tons of CO2 per year.



## EPA Air Quality – Key Vehicular Emissions

- Several automobile relevant atmospheric species are regulated by the National Ambient Air Quality Standards of the Clean Air Act
  - Carbon Monoxide (CO)
  - Nitrogen Dioxides (NO<sub>x</sub>)
  - Particulate Matter smaller than or equal to 10 μm in diameter (PM<sub>10</sub>)
  - Particulate Matter smaller than or equal to 2.5 μm in diameter (PM<sub>2.5</sub>)
  - Ozone (not a direct emission but produced photochemically in the presence of volatile organic compounds (VOC) and NO<sub>x</sub>)



# CO2 Regulations

- Federal CO2 Regulations Forthcoming?
  - 17 states have adopted emissions reductions targets
    - Vary by effective date, stringency, mandatory, voluntary
  - Massachusetts v. EPA (decided April 2, 2007)
    - EPA has responsibility to regulate GHG for public health and welfare
  - Other Countries agreeing to Kyoto Protocol
    - Australia, Canada, EU, Japan, New Zealand



# Background

Carbon dioxide is the most prevalent greenhouse gas (GHG) emitted in the United States and it primarily comes from the energy used in buildings and transportation







#### Recent Federal Acts

- Energy Independence and Security Act of 2007
  - Corporate Average Fuel Economy (CAFE) for new passenger vehicles to rise to 35 MPG by 2020, a 40% average increase over 2007 standards of 27.5 mpg for cars and 22.5 mpg for light trucks and SUVs.
  - Renewable fuel requirements would reduce life cycle
     GHG by 10% by 2025.
  - Absent growth in driving, these measures would reduce
     CO2 emissions by 23% below 2005 levels.

Source: Growing Cooler, R. Ewing et al. 2008



#### Vehicle Miles Traveled

 VMT forecasted to increase 48% between 2005 and 2030

 VMT increase negates any air pollutant reduction gained from CAFE standard increase and renewable fuel requirements.

Source: Department of Energy Information Administration

Growing Cooler, R. Ewing et al. 2008



# Multiple Approaches

- In order to have carbon dioxide reductions, multiple approaches must be employed:
  - Land use
  - Alternatives to reduce VMT
  - Policy Incentives to reduce CO2 emissions



# Managed Lanes Policy Options and Analysis



# Managed Lanes Potential

- How would Managed Lanes help reduce CO2 emissions in the Atlanta Region?
  - Reduced congestion on the highways
  - Guaranteed transit travel times increase competitiveness with Single-Occupant Vehicles



## MLSP Study Area





## Managed Lanes Policies

#### Eligibility Policies

- Cars Only (Transit)
  - High Occupancy Tolls (HOT)
    - HOT2 with 2 passengers no tolls charged
    - HOT3
    - HOT4
  - ETL Electronic Toll Lanes all vehicles pay toll
- Truck Only
  - Truck Only Tolls (TOT)
- Cars & Trucks (Transit)
  - Mixed ETL
  - ETL/TOT

#### Pricing Policy

Maximize Throughput price the lanes to
 maximize the number
 of users while
 maintaining a threshold
 speed of 45 mph.



- Congestion Reductions
  - Decreased vehicle hours traveled, which reduces emissions for wasted, burned fuel from idling in traffic
- Less fuel burned means less emissions
  - -Quantity of gasoline conserved directly relates to reduced vehicle emissions
- Guaranteed 45 mph travel speeds
  - -Managed lane travel keeps vehicles at the most efficient travel speed



- •Time Saved in Delay Compared to No Project Undertaken
  - -Establishes benchmark for gasoline conserved
- Texas Transportation Institute
  - -0.68 gallons of fuel per hour
  - -300 driving days per year
- Guaranteed 45 mph travel speeds
  - -Managed lane travel keeps vehicles at the most efficient travel speed



- Data Assumptions
  - 80% Car/Light Truck 20% Diesel Truck
  - 4 miles buffer of the MLSP corridor
  - Gasoline savings assumptions (0.68 gallons per hour and 300 driving days per year)



#### Methodology

- Established emission rates in g/gal of gasoline consumed from literature reviews
- Used delay induced gasoline wasted to established a benchmark for 'excess emissions' – emissions that otherwise wouldn't be apart of the system if it weren't for congestion
- Emission reductions a function of delay reduction directly on the corridor



#### Climate Change – Trip Speed/Emission Relationship



- Managed flow provides more reliable travel speeds
- Reduced congestion reduces emission rate/mile
- Applies to other vehicular emissions as well (NO<sub>x</sub>, VOC, PM, etc)



# Climate Change – Results



- 17 38 % drop in wasted CO<sub>2</sub> emissions over no build conditions
- Roads within a 4-mile buffer of the interstate system in Atlanta region



# Putting the CO2 Reductions in Perspective

 2.4 million tons CO2 per year savings is equivalent to the carbon reductions produced by 14 80MW solar farms (640 acres each)

Source: Climate Change in the Atlanta Metropolitan Region



#### Carbon Footprint Reduction - Results



- Assumes 2030 population of 6.97 million
- With managed lanes, this could be 0.19 – 0.27 m tons per capita, a 23 – 46 % reduction compared to the no project scenario
- Reducing delay can substantially contribute to carbon footprint reductions in metropolitan Atlanta



#### Managed Lanes

- Managed Lanes offer:
  - Traffic congestion reduction
  - Transit and carpool travel time benefits
  - Multiple options for transportation
  - Air quality benefits, reduced associated health risks



#### Questions

- Determine Your Carbon Footprint
  - Take steps to reduce it

Thanks!



# Reducing the Carbon Footprint Through Land Use and Transportation

Questions?

